Climate threats to coastal infrastructure and sustainable development outcomes

Author:

Adshead DanielORCID,Paszkowski AmelieORCID,Gall Sarah S.ORCID,Peard Alison M.ORCID,Adnan Mohammed Sarfaraz GaniORCID,Verschuur JasperORCID,Hall Jim W.ORCID

Abstract

AbstractClimate hazards pose increasing threats to development outcomes across the world’s coastal regions by impacting infrastructure service delivery. Using a high-resolution dataset of 8.2 million households in Bangladesh’s coastal zone, we assess the extent to which infrastructure service disruptions induced by flood, cyclone and erosion hazards can thwart progress towards the Sustainable Development Goals (SDGs). Results show that climate hazards potentially threaten infrastructure service access to all households, with the poorest being disproportionately threatened in 69% of coastal subdistricts. Targeting adaptation to these climatic threats in one-third (33%) of the most vulnerable areas could help to safeguard 50–85% of achieved progress towards SDG 3, 4, 7, 8 and 13 indicators. These findings illustrate the potential of geospatial climate risk analyses, which incorporate direct household exposure and essential service access. Such high-resolution analyses are becoming feasible even in data-scarce parts of the world, helping decision-makers target and prioritize pro-poor development.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3