Architectural design of 2D covalent organic frameworks (COFs) for pharmaceutical pollutant removal

Author:

Akhzari Sajad,Raissi HeidarORCID,Ghahari AfsanehORCID

Abstract

AbstractMacrolide antibiotics, including erythromycin, clarithromycin, and azithromycin, are frequently misused for human treatment globally. Therefore, they were considered high-risk substances on the Union-wide monitoring Watch list under Regulation 2018/840/EU. The present work investigates the adsorption behavior of the pharmaceutical pollutants on the 1,3,5-tris (4-aminophenyl) benzene/2,5 dimethoxyterephthalaldehyde (TAPB-DMTP) covalent organic frameworks (COFs). In this study, we employ molecular dynamics simulations and well-tempered metadynamics to evaluate the adsorption affinity of pristine covalent organic frameworks and their functionalized form (F-COFs) for the removal of four distinct pharmaceutical pollutant molecules (PPMs): erythromycin (EMC), dexamethasone (DEG), azithromycin (AZM), and clarithromycin (CMC). We utilized MD simulations to examine the impact of two different temperatures (298 and 310 K) on enhancing the adsorption of the pharmaceutical contaminants from wastewater by COFs/F-COFs. To evaluate this process, several descriptors are calculated from the simulation trajectories, including interaction energies, root-mean-square deviation, radial distribution function, solvent-accessible surface area, mean square displacement, and the number of hydrogen bonds (HB). It is determined that HB and X–H⋯π (X = C, N, O; π = aromatic system) interactions are the most critical factors contributing to system stability. In addition, it is shown that COFs with a pore-based structure have a higher capacity for removing pollutants. The free energy landscapes confirm that the global minimum is typically associated with the formation of hydrogen bonds. At 298 K, their global minima are DEG/F-COFs = −665.81, AZM/F-COFs = −638.53, EMC/F-COFs = −566.31, and CMC/F-COFs = −326.75 KJ mol−1.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3