Application of chemometrics for modeling and optimization of ultrasound-assisted dispersive liquid–liquid microextraction for the simultaneous determination of dyes

Author:

Shojaei SiroosORCID,Shojaei Saeed,Nouri Arezoo,Baharinikoo Leila

Abstract

AbstractAs the world population continues to grow, so does the pollution of water resources. It is, therefore, important to identify ways of reducing pollution as part of our effort to significantly increase the supply of clean and safer water. In this study, the efficiency of ultrasound-assisted dispersive liquid–liquid microextraction (UA-DLLME) as a fast, economical, and simple method for extraction malachite green (MG) and rhodamine B (RB) dyes from water samples is investigated. In optimal conditions, the linear dynamic range (LDR) for RB and MG is 7.5–1500 ng mL−1 and 12–1000 ng mL−1, respectively. The limit of detection (LOD) is 1.45 ng mL−1 and 2.73 ng mL−1, and limit of quantification (LOQ) is 4.83 ng mL−1 and 9.10 ng mL−1 for RB and MG, respectively. Extraction efficiency is obtained in the range of 95.53–99.60%. The relative standard deviations (RSD) in real water and wastewater samples are less than 3.5. The developed method is used successfully in the determination of RB and MG dyes from water samples and there are satisfactory results.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3