Abstract
AbstractThe lack of electron donors in oxygen-rich aquatic environments limits the ability of natural denitrification to remove excess nitrate, leading to eutrophication of aquatic ecosystems. Herein, we demonstrate that electron-rich substances in river or lake sediments could participate in long-distance electron rebalancing to reduce nitrate in the overlying water. A microstructure containing Dechloromonas and consisting of an inner layer of green rust and an outer layer of lepidocrocite forms in the sediment-water system through synergetic evolution and self-assembly. The microstructure enables long-distance electron transfer from the sediment to dilute nitrate in the overlying water. Specifically, the inner green rust adsorbs nitrate and reduces the kinetic barrier for denitrification via an Fe(II)/Fe(III) redox mediator. Our study reveals the mechanism of spontaneous electron transfer between distant and dilute electron donors and acceptors to achieve denitrification in electron-deficient aquatic systems.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology
Reference52 articles.
1. Reddy, K., Patrick, W. & Broadbent, F. Nitrogen transformations and loss in flooded soils and sediments. Crit. Rev. Environ. Sci. Technol. 13, 273–309 (1984).
2. Ottley, C., Davison, W. & Edmunds, W. Chemical catalysis of nitrate reduction by iron (II). Geochim. Cosmochim. Acta 61, 1819–1828 (1997).
3. Anderson, D. M., Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25, 704–726 (2002).
4. Wang, S. et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 217, 444–460 (2018).
5. Granger, J., Sigman, D. M., Needoba, J. A. & Harrison, P. J. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol. Oceanogr. 49, 1763–1773 (2004).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献