Sustainable and green polylactic acid-based membrane embedded with self-assembled positively charged f-MWCNTs/GO nanohybrids for the removal of nutrients from wastewater

Author:

Nassar Lobna,Wadi Vijay S.,Hegab Hanaa M.,Khalil Hiyam,Banat Fawzi,Naddeo VincenzoORCID,Hasan Shadi W.ORCID

Abstract

AbstractIn this study, the synthesis, and chemical-physical characterization of self-assembled positively charged multi-walled carbon nanotubes/graphene oxide (f-MWCNTs)/(GO)-nanohybrids into adsorptive PLA-based membranes were investigated. The application of the innovative PLA/f-MWCNTs/GO membrane was investigated for the removal of nutrients such as nitrogen (N) and phosphorus (P) from both synthetic and real wastewater by performing various characterization and performance tests. The positively charged nanohybrid was prepared by electrostatic self-assembly of positively charged f-MWCNTs and negatively charged GO. The amount of nanohybrid loading in the nanocomposite membranes varied from 0 to 6 wt%, and its effects on nutrient removal and water flux were investigated. It is demonstrated that with the addition of only 1.5 wt% f-MWCNT/GO nanohybrid into the PLA matrix, the water flux increased by 74% when compared to the unmodified membrane. Also, up to 90.1 ± 3.4% and 71.3 ± 3.1% removal rates of ammonium-nitrogen (NH4+-N) and phosphate (PO43−-P) ions were achieved using raw wastewater, respectively. The obtained results confirm the practical usability of the proposed innovative material for membrane fabrication in real wastewater treatment applications and can open doors to efficient and sustainable methods for nutrient removal.

Funder

Khalifa University of Science, Technology and Research

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3