Population health implications of exposure to pervasive military aircraft noise pollution

Author:

Jacuzzi GiordanoORCID,Kuehne Lauren M.ORCID,Harvey Anne,Hurley Christine,Wilbur Robert,Seto EdmundORCID,Olden Julian D.ORCID

Abstract

Abstract Background While the adverse health effects of civil aircraft noise are relatively well studied, impacts associated with more intense and intermittent noise from military aviation have been rarely assessed. In recent years, increased training at Naval Air Station Whidbey Island, USA has raised concerns regarding the public health and well-being implications of noise from military aviation. Objective This study assessed the public health risks of military aircraft noise by developing a systematic workflow that uses acoustic and aircraft operations data to map noise exposure and predict health outcomes at the population scale. Methods Acoustic data encompassing seven years of monitoring efforts were integrated with flight operations data for 2020–2021 and a Department of Defense noise simulation model to characterize the noise regime. The model produced contours for day-night, nighttime, and 24-h average levels, which were validated by field monitoring and mapped to yield the estimated noise burden. Established thresholds and exposure-response relationships were used to predict the population subject to potential noise-related health effects, including annoyance, sleep disturbance, hearing impairment, and delays in childhood learning. Results Over 74,000 people within the area of aircraft noise exposure were at risk of adverse health effects. Of those exposed, substantial numbers were estimated to be highly annoyed and highly sleep disturbed, and several schools were exposed to levels that place them at risk of delay in childhood learning. Noise in some areas exceeded thresholds established by federal regulations for public health, residential land use and noise mitigation action, as well as the ranges of established exposure-response relationships. Impact statement This study quantified the extensive spatial scale and population health burden of noise from military aviation. We employed a novel GIS-based workflow for relating mapped distributions of aircraft noise exposure to a suite of public health outcomes by integrating acoustic monitoring and simulation data with a dasymetric population density map. This approach enables the evaluation of population health impacts due to past, current, and future proposed military operations. Moreover, it can be modified for application to other environmental noise sources and offers an improved open-source tool to assess the population health implications of environmental noise exposure, inform at-risk communities, and guide efforts in noise mitigation and policy governing noise legislation, urban planning, and land use.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3