Deep learning-based grading of ductal carcinoma in situ in breast histopathology images

Author:

Wetstein Suzanne C.ORCID,Stathonikos NikolasORCID,Pluim Josien P. W.,Heng Yujing J.ORCID,ter Hoeve Natalie D.,Vreuls Celien P. H.,van Diest Paul J.,Veta Mitko

Abstract

AbstractDuctal carcinoma in situ (DCIS) is a non-invasive breast cancer that can progress into invasive ductal carcinoma (IDC). Studies suggest DCIS is often overtreated since a considerable part of DCIS lesions may never progress into IDC. Lower grade lesions have a lower progression speed and risk, possibly allowing treatment de-escalation. However, studies show significant inter-observer variation in DCIS grading. Automated image analysis may provide an objective solution to address high subjectivity of DCIS grading by pathologists. In this study, we developed and evaluated a deep learning-based DCIS grading system. The system was developed using the consensus DCIS grade of three expert observers on a dataset of 1186 DCIS lesions from 59 patients. The inter-observer agreement, measured by quadratic weighted Cohen’s kappa, was used to evaluate the system and compare its performance to that of expert observers. We present an analysis of the lesion-level and patient-level inter-observer agreement on an independent test set of 1001 lesions from 50 patients. The deep learning system (dl) achieved on average slightly higher inter-observer agreement to the three observers (o1, o2 and o3) (κo1,dl = 0.81, κo2,dl = 0.53 and κo3,dl = 0.40) than the observers amongst each other (κo1,o2 = 0.58, κo1,o3 = 0.50 and κo2,o3 = 0.42) at the lesion-level. At the patient-level, the deep learning system achieved similar agreement to the observers (κo1,dl = 0.77, κo2,dl = 0.75 and κo3,dl = 0.70) as the observers amongst each other (κo1,o2 = 0.77, κo1,o3 = 0.75 and κo2,o3 = 0.72). The deep learning system better reflected the grading spectrum of DCIS than two of the observers. In conclusion, we developed a deep learning-based DCIS grading system that achieved a performance similar to expert observers. To the best of our knowledge, this is the first automated system for the grading of DCIS that could assist pathologists by providing robust and reproducible second opinions on DCIS grade.

Funder

This work was supported by the Deep Learning for Medical Image Analysis research program by The Dutch Research Council P15-26 and Philips Research.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3