Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning

Author:

Kawai MunenoriORCID,Fukuda AkihisaORCID,Otomo Ryo,Obata Shunsuke,Minaga Kosuke,Asada Masanori,Umemura Atsushi,Uenoyama Yoshito,Hieda Nobuhiro,Morita Toshihiro,Minami Ryuki,Marui Saiko,Yamauchi Yuki,Nakai Yoshitaka,Takada Yutaka,Ikuta Kozo,Yoshioka Takuto,Mizukoshi Kenta,Iwane Kosuke,Yamakawa Go,Namikawa Mio,Sono Makoto,Nagao Munemasa,Maruno Takahisa,Nakanishi YukiORCID,Hirai Mitsuharu,Kanda Naoki,Shio Seiji,Itani Toshinao,Fujii Shigehiko,Kimura Toshiyuki,Matsumura Kazuyoshi,Ohana Masaya,Yazumi Shujiro,Kawanami Chiharu,Yamashita Yukitaka,Marusawa Hiroyuki,Watanabe Tomohiro,Ito Yoshito,Kudo Masatoshi,Seno Hiroshi

Abstract

Abstract Background Pancreatic cancer is often diagnosed at advanced stages, and early-stage diagnosis of pancreatic cancer is difficult because of nonspecific symptoms and lack of available biomarkers. Methods We performed comprehensive serum miRNA sequencing of 212 pancreatic cancer patient samples from 14 hospitals and 213 non-cancerous healthy control samples. We randomly classified the pancreatic cancer and control samples into two cohorts: a training cohort (N = 185) and a validation cohort (N = 240). We created ensemble models that combined automated machine learning with 100 highly expressed miRNAs and their combination with CA19-9 and validated the performance of the models in the independent validation cohort. Results The diagnostic model with the combination of the 100 highly expressed miRNAs and CA19-9 could discriminate pancreatic cancer from non-cancer healthy control with high accuracy (area under the curve (AUC), 0.99; sensitivity, 90%; specificity, 98%). We validated high diagnostic accuracy in an independent asymptomatic early-stage (stage 0-I) pancreatic cancer cohort (AUC:0.97; sensitivity, 67%; specificity, 98%). Conclusions We demonstrate that the 100 highly expressed miRNAs and their combination with CA19-9 could be biomarkers for the specific and early detection of pancreatic cancer.

Funder

Japan Agency for Medical Research and Development

MEXT | Japan Society for the Promotion of Science

MEXT | Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3