Development and validation of a web-based prediction tool on minor physical anomalies for schizophrenia

Author:

Wang Xin-Yu,Lin Jin-Jia,Lu Ming-Kun,Jang Fong-Lin,Tseng Huai-HsuanORCID,Chen Po-See,Chen Po-Fan,Chang Wei-Hung,Huang Chih-Chun,Lu Ke-Ming,Tan Hung-Pin,Lin Sheng-HsiangORCID

Abstract

AbstractIn support of the neurodevelopmental model of schizophrenia, minor physical anomalies (MPAs) have been suggested as biomarkers and potential pathophysiological significance for schizophrenia. However, an integrated, clinically useful tool that used qualitative and quantitative MPAs to visualize and predict schizophrenia risk while characterizing the degree of importance of MPA items was lacking. We recruited a training set and a validation set, including 463 schizophrenia patients and 281 healthy controls to conduct logistic regression and the least absolute shrinkage and selection operator (Lasso) regression to select the best parameters of MPAs and constructed nomograms. Two nomograms were built to show the weights of these predictors. In the logistic regression model, 11 out of a total of 68 parameters were identified as the best MPA items for distinguishing between patients with schizophrenia and controls, including hair whorls, epicanthus, adherent ear lobes, high palate, furrowed tongue, hyperconvex fingernails, a large gap between first and second toes, skull height, nasal width, mouth width, and palate width. The Lasso regression model included the same variables of the logistic regression model, except for nasal width, and further included two items (interpupillary distance and soft ears) to assess the risk of schizophrenia. The results of the validation dataset verified the efficacy of the nomograms with the area under the curve 0.84 and 0.85 in the logistic regression model and lasso regression model, respectively. This study provides an easy-to-use tool based on validated risk models of schizophrenia and reflects a divergence in development between schizophrenia patients and healthy controls (https://www.szprediction.net/).

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3