Abstract
AbstractIn glioblastoma, a mesenchymal phenotype is associated with especially poor patient outcomes. Various glioblastoma microenvironmental factors and therapeutic interventions are purported drivers of the mesenchymal transition, but the degree to which these cues promote the same mesenchymal transitions and the uniformity of those transitions, as defined by molecular subtyping systems, is unknown. Here, we investigate this question by analyzing publicly available patient data, surveying commonly measured transcripts for mesenchymal transitions in glioma-initiating cells (GIC), and performing next-generation RNA sequencing of GICs. Analysis of patient tumor data reveals that TGFβ, TNFα, and hypoxia signaling correlate with the mesenchymal subtype more than the proneural subtype. In cultured GICs, the microenvironment-relevant growth factors TGFβ and TNFα and the chemotherapeutic temozolomide promote expression of commonly measured mesenchymal transcripts. However, next-generation RNA sequencing reveals that growth factors and temozolomide broadly promote expression of both mesenchymal and proneural transcripts, in some cases with equal frequency. These results suggest that glioblastoma mesenchymal transitions do not occur as distinctly as in epithelial-derived cancers, at least as determined using common subtyping ontologies and measuring response to growth factors or chemotherapeutics. Further understanding of these issues may identify improved methods for pharmacologically targeting the mesenchymal phenotype in glioblastoma.
Funder
American Cancer Society
U.S. Department of Health & Human Services | NIH | National Cancer Institute
U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献