In situ recording of Mars soundscape

Author:

Maurice S.ORCID,Chide B.ORCID,Murdoch N.ORCID,Lorenz R. D.,Mimoun D.ORCID,Wiens R. C.ORCID,Stott A.,Jacob X.ORCID,Bertrand T.ORCID,Montmessin F.ORCID,Lanza N. L.ORCID,Alvarez-Llamas C.ORCID,Angel S. M.,Aung M.,Balaram J.,Beyssac O.,Cousin A.,Delory G.,Forni O.ORCID,Fouchet T.ORCID,Gasnault O.ORCID,Grip H.,Hecht M.ORCID,Hoffman J.,Laserna J.,Lasue J.ORCID,Maki J.,McClean J.,Meslin P.-Y.ORCID,Le Mouélic S.ORCID,Munguira A.ORCID,Newman C. E.ORCID,Rodríguez Manfredi J. A.ORCID,Moros J.,Ollila A.,Pilleri P.,Schröder S.ORCID,de la Torre Juárez M.ORCID,Tzanetos T.,Stack K. M.,Farley K.,Williford K.ORCID,Wiens R. C.,Acosta-Maeda T.,Anderson R. B.,Applin D. M.,Arana G.,Bassas-Portus M.,Beal R.,Beck P.,Benzerara K.,Bernard S.,Bernardi P.,Bosak T.,Bousquet B.,Brown A.,Cadu A.,Caïs P.,Castro K.,Clavé E.,Clegg S. M.,Cloutis E.,Connell S.,Debus A.,Dehouck E.,Delapp D.,Donny C.,Dorresoundiram A.,Dromart G.,Dubois B.,Fabre C.,Fau A.,Fischer W.,Francis R.,Frydenvang J.,Gabriel T.,Gibbons E.,Gontijo I.,Johnson J. R.,Kalucha H.,Kelly E.,Knutsen E. W.,Lacombe G.,Le Mouélic S.,Legett C.,Leveille R.,Lewin E.,Lopez-Reyes G.,Lorigny E.,Madariaga J. M.,Madsen M.,Madsen S.,Mandon L.,Mangold N.,Mann M.,Manrique J.-A.,Martinez-Frias J.,Mayhew L. E.,McConnochie T.,McLennan S. M.,Melikechi N.,Meunier F.,Montagnac G.,Mousset V.,Nelson T.,Newell R. T.,Parot Y.,Pilorget C.,Pinet P.,Pont G.,Poulet F.,Quantin-Nataf C.,Quertier B.,Rapin W.,Reyes-Newell A.,Robinson S.,Rochas L.,Royer C.,Rull F.,Sautter V.,Sharma S.,Shridar V.,Sournac A.,Toplis M.,Torre-Fdez I.,Turenne N.,Udry A.,Veneranda M.,Venhaus D.,Vogt D.,Willis P.,

Abstract

AbstractBefore the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2–4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s−1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus. 

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3