Exponential suppression of bit or phase errors with cyclic error correction

Author:

,Chen Zijun,Satzinger Kevin J.,Atalaya Juan,Korotkov Alexander N.,Dunsworth Andrew,Sank Daniel,Quintana Chris,McEwen MattORCID,Barends Rami,Klimov Paul V.,Hong Sabrina,Jones Cody,Petukhov Andre,Kafri Dvir,Demura SeanORCID,Burkett BrianORCID,Gidney Craig,Fowler Austin G.,Paler AlexandruORCID,Putterman Harald,Aleiner Igor,Arute Frank,Arya Kunal,Babbush Ryan,Bardin Joseph C.ORCID,Bengtsson Andreas,Bourassa Alexandre,Broughton Michael,Buckley Bob B.,Buell David A.,Bushnell Nicholas,Chiaro Benjamin,Collins Roberto,Courtney William,Derk Alan R.,Eppens Daniel,Erickson Catherine,Farhi Edward,Foxen Brooks,Giustina Marissa,Greene Ami,Gross Jonathan A.,Harrigan Matthew P.ORCID,Harrington Sean D.ORCID,Hilton Jeremy,Ho Alan,Huang Trent,Huggins William J.ORCID,Ioffe L. B.,Isakov Sergei V.,Jeffrey Evan,Jiang Zhang,Kechedzhi Kostyantyn,Kim Seon,Kitaev Alexei,Kostritsa Fedor,Landhuis DavidORCID,Laptev Pavel,Lucero Erik,Martin Orion,McClean Jarrod R.ORCID,McCourt Trevor,Mi Xiao,Miao Kevin C.,Mohseni Masoud,Montazeri Shirin,Mruczkiewicz WojciechORCID,Mutus Josh,Naaman OferORCID,Neeley MatthewORCID,Neill CharlesORCID,Newman Michael,Niu Murphy Yuezhen,O’Brien Thomas E.,Opremcak Alex,Ostby Eric,Pató Bálint,Redd NicholasORCID,Roushan Pedram,Rubin Nicholas C.,Shvarts Vladimir,Strain Doug,Szalay Marco,Trevithick Matthew D.,Villalonga Benjamin,White Theodore,Yao Z. Jamie,Yeh PingORCID,Yoo Juhwan,Zalcman AdamORCID,Neven Hartmut,Boixo SergioORCID,Smelyanskiy Vadim,Chen Yu,Megrant AnthonyORCID,Kelly JulianORCID

Abstract

AbstractRealizing the potential of quantum computing requires sufficiently low logical error rates1. Many applications call for error rates as low as 10−15 (refs. 2–9), but state-of-the-art quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum error correction15–17 promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device18,19 and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3