Exponential suppression of bit or phase errors with cyclic error correction
Author:
, Chen Zijun, Satzinger Kevin J., Atalaya Juan, Korotkov Alexander N., Dunsworth Andrew, Sank Daniel, Quintana Chris, McEwen MattORCID, Barends Rami, Klimov Paul V., Hong Sabrina, Jones Cody, Petukhov Andre, Kafri Dvir, Demura SeanORCID, Burkett BrianORCID, Gidney Craig, Fowler Austin G., Paler AlexandruORCID, Putterman Harald, Aleiner Igor, Arute Frank, Arya Kunal, Babbush Ryan, Bardin Joseph C.ORCID, Bengtsson Andreas, Bourassa Alexandre, Broughton Michael, Buckley Bob B., Buell David A., Bushnell Nicholas, Chiaro Benjamin, Collins Roberto, Courtney William, Derk Alan R., Eppens Daniel, Erickson Catherine, Farhi Edward, Foxen Brooks, Giustina Marissa, Greene Ami, Gross Jonathan A., Harrigan Matthew P.ORCID, Harrington Sean D.ORCID, Hilton Jeremy, Ho Alan, Huang Trent, Huggins William J.ORCID, Ioffe L. B., Isakov Sergei V., Jeffrey Evan, Jiang Zhang, Kechedzhi Kostyantyn, Kim Seon, Kitaev Alexei, Kostritsa Fedor, Landhuis DavidORCID, Laptev Pavel, Lucero Erik, Martin Orion, McClean Jarrod R.ORCID, McCourt Trevor, Mi Xiao, Miao Kevin C., Mohseni Masoud, Montazeri Shirin, Mruczkiewicz WojciechORCID, Mutus Josh, Naaman OferORCID, Neeley MatthewORCID, Neill CharlesORCID, Newman Michael, Niu Murphy Yuezhen, O’Brien Thomas E., Opremcak Alex, Ostby Eric, Pató Bálint, Redd NicholasORCID, Roushan Pedram, Rubin Nicholas C., Shvarts Vladimir, Strain Doug, Szalay Marco, Trevithick Matthew D., Villalonga Benjamin, White Theodore, Yao Z. Jamie, Yeh PingORCID, Yoo Juhwan, Zalcman AdamORCID, Neven Hartmut, Boixo SergioORCID, Smelyanskiy Vadim, Chen Yu, Megrant AnthonyORCID, Kelly JulianORCID
Abstract
AbstractRealizing the potential of quantum computing requires sufficiently low logical error rates1. Many applications call for error rates as low as 10−15 (refs. 2–9), but state-of-the-art quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum error correction15–17 promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device18,19 and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference46 articles.
1. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). 2. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303 (1999). 3. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). 4. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461(2018). 5. Campbell, E., Khurana, A. & Montanaro, A. Applying quantum algorithms to constraint satisfaction problems. Quantum 3, 167 (2019).
Cited by
250 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|