The quantum transition of the two-dimensional Ising spin glass

Author:

Bernaschi MassimoORCID,González-Adalid Pemartín IsidoroORCID,Martín-Mayor VíctorORCID,Parisi Giorgio

Abstract

AbstractQuantum annealers are commercial devices that aim to solve very hard computational problems1, typically those involving spin glasses2,3. Just as in metallurgic annealing, in which a ferrous metal is slowly cooled4, quantum annealers seek good solutions by slowly removing the transverse magnetic field at the lowest possible temperature. Removing the field diminishes the quantum fluctuations but forces the system to traverse the critical point that separates the disordered phase (at large fields) from the spin-glass phase (at small fields). A full understanding of this phase transition is still missing. A debated, crucial question regards the closing of the energy gap separating the ground state from the first excited state. All hopes of achieving an exponential speed-up, compared to classical computers, rest on the assumption that the gap will close algebraically with the number of spins5–9. However, renormalization group calculations predict instead that there is an infinite-randomness fixed point10. Here we solve this debate through extreme-scale numerical simulations, finding that both parties have grasped parts of the truth. Although the closing of the gap at the critical point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of possible excitations. As this symmetry restriction is experimentally achievable (at least nominally), there is still hope for the quantum annealing paradigm11–13.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3