Photochemically produced SO2 in the atmosphere of WASP-39b
Author:
Tsai Shang-MinORCID, Lee Elspeth K. H., Powell Diana, Gao Peter, Zhang Xi, Moses Julianne, Hébrard Eric, Venot Olivia, Parmentier Vivien, Jordan Sean, Hu Renyu, Alam Munazza K., Alderson Lili, Batalha Natalie M., Bean Jacob L., Benneke Björn, Bierson Carver J., Brady Ryan P., Carone Ludmila, Carter Aarynn L., Chubb Katy L., Inglis Julie, Leconte Jérémy, Line Michael, López-Morales Mercedes, Miguel Yamila, Molaverdikhani Karan, Rustamkulov Zafar, Sing David K., Stevenson Kevin B., Wakeford Hannah R., Yang Jeehyun, Aggarwal Keshav, Baeyens Robin, Barat Saugata, de Val-Borro Miguel, Daylan Tansu, Fortney Jonathan J., France Kevin, Goyal Jayesh M., Grant David, Kirk James, Kreidberg Laura, Louca Amy, Moran Sarah E., Mukherjee Sagnick, Nasedkin Evert, Ohno Kazumasa, Rackham Benjamin V., Redfield Seth, Taylor Jake, Tremblin Pascal, Visscher Channon, Wallack Nicole L., Welbanks Luis, Youngblood Allison, Ahrer Eva-Maria, Batalha Natasha E., Behr Patrick, Berta-Thompson Zachory K., Blecic Jasmina, Casewell S. L., Crossfield Ian J. M., Crouzet Nicolas, Cubillos Patricio E., Decin Leen, Désert Jean-Michel, Feinstein Adina D., Gibson Neale P., Harrington Joseph, Heng Kevin, Henning Thomas, Kempton Eliza M.-R., Krick Jessica, Lagage Pierre-Olivier, Lendl Monika, Lothringer Joshua D., Mansfield Megan, Mayne N. J., Mikal-Evans Thomas, Palle Enric, Schlawin Everett, Shorttle Oliver, Wheatley Peter J., Yurchenko Sergei N.
Abstract
AbstractPhotochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference125 articles.
1. Yung, Y. L. & DeMore, W. B. Photochemistry of Planetary Atmospheres (Oxford Univ. Press, 1999). 2. Stevenson, K. B. et al. Transiting exoplanet studies and community targets for JWST’s Early Release Science Program. Publ. Astron. Soc. Pac. 128, 094401–094411 (2016). 3. Bean, J. L. et al. The Transiting Exoplanet Community Early Release Science Program for JWST. Publ. Astron. Soc. Pac. 130, 114402–114421 (2018). 4. Faedi, F. et al. WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star. Astron. Astrophys. 531, A40 (2011). 5. Zahnle, K., Marley, M. S., Morley, C. V. & Moses, J. I. Photolytic hazes in the atmosphere of 51 ERI b. Astrophys. J. 824, 137 (2016).
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|