Work hardening in colloidal crystals

Author:

Kim SeongsooORCID,Svetlizky IlyaORCID,Weitz David A.ORCID,Spaepen FransORCID

Abstract

AbstractColloidal crystals exhibit interesting properties1–4 that are in many ways analogous to their atomic counterparts. They have the same crystal structures2,5–7, undergo the same phase transitions8–10, and possess the same crystallographic defects11–14. In contrast to these structural properties, the mechanical properties of colloidal crystals are quite different from those of atomic systems. For example, unlike in atomic systems, the elasticity of hard-sphere colloidal crystals is purely entropic15; as a result, they are so soft that they can be melted just by stirring16,17. Moreover, crystalline materials deform plastically when subjected to increasing shear and become stronger because of the ubiquitous process of work hardening18; but this has so far never been observed in colloidal crystals, to our knowledge. Here we show that hard-sphere colloidal crystals exhibit work hardening. Moreover, despite their softness, the shear strength of colloidal crystals can increase and approach the theoretical limit for crystals, a value reached in very few other materials so far. We use confocal microscopy to show that the strength of colloidal crystals increases with dislocation density, and ultimately reaches the classic Taylor scaling behaviour for atomic materials19–21, although hard-sphere interactions lack the complexity of atomic interactions. We demonstrate that Taylor hardening arises through the formation of dislocation junctions22. The Taylor hardening regime, however, is established only after a transient phase, and it ceases when the colloidal crystals become so hard that the strain is localized within a thin boundary layer in which slip results from an unconventional motion of dislocations. The striking resemblance between colloidal and atomic crystals, despite the many orders of magnitude difference in particle size and shear modulus, demonstrates the universality of work hardening.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3