Self-supervised deep learning for tracking degradation of perovskite light-emitting diodes with multispectral imaging

Author:

Ji KangyuORCID,Lin Weizhe,Sun YuqiORCID,Cui Lin-SongORCID,Shamsi Javad,Chiang Yu-Hsien,Chen Jiawei,Tennyson Elizabeth M.ORCID,Dai LinjieORCID,Li Qingbiao,Frohna KyleORCID,Anaya MiguelORCID,Greenham Neil C.,Stranks Samuel D.ORCID

Abstract

AbstractEmerging functional materials such as halide perovskites are intrinsically unstable, causing long-term instability in optoelectronic devices made from these materials. This leads to difficulty in capturing useful information on device degradation through time-consuming optical characterization in their operating environments. Despite these challenges, understanding the degradation mechanism is crucial for advancing the technology towards commercialization. Here we present a self-supervised machine learning model that utilizes a multi-channel correlation and blind denoising to recover images without high-quality references, enabling fast and low-dose measurements. We perform operando luminescence mapping of various emerging optoelectronic semiconductors, including organic and halide perovskite photovoltaic and light-emitting devices. By tracking the spatially resolved degradation in electroluminescence of mixed-halide perovskite blue-light-emitting diodes, we discovered that lateral ion migration (perpendicular to the external electric field) during device operation triggers the formation of chloride-rich defective regions that emit poorly—a mechanism that would not be resolvable with conventional imaging approaches.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3