Abstract
AbstractAnimals achieve agile locomotion performance with reduced control effort and energy efficiency by leveraging compliance in their muscles and tendons. However, it is not known how biological locomotion controllers learn to leverage the intelligence embodied in their leg mechanics. Here we present a framework to match control patterns and mechanics based on the concept of short-term elasticity and long-term plasticity. Inspired by animals, we design a robot, Morti, with passive elastic legs. The quadruped robot Morti is controlled by a bioinspired closed-loop central pattern generator that is designed to elastically mitigate short-term perturbations using sparse contact feedback. By minimizing the amount of corrective feedback on the long term, Morti learns to match the controller to its mechanics and learns to walk within 1 h. By leveraging the advantages of its mechanics, Morti improves its energy efficiency by 42% without explicit minimization in the cost function.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献