Aerobic methylation of hydrogen sulfide to dimethylsulfide in diverse microorganisms and environments

Author:

Li Chun-Yang1ORCID,Cao Hai-Yan123ORCID,Wang Qing2,Carrión Ornella4,Zhu Xiaoyu4,Miao Jie2,Wang Peng13,Chen Xiu-Lan23ORCID,Todd Jonathan D4ORCID,Zhang Yu-Zhong123ORCID

Affiliation:

1. MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China , Qingdao, China

2. State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University , Qingdao, China

3. Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology , Qingdao, China

4. School of Biological Sciences, University of East Anglia, Norwich Research Park , Norwich, UK

Abstract

Abstract Dimethylsulfide (DMS) is the major biosulfur source emitted to the atmosphere with key roles in global sulfur cycling and potentially climate regulation. The main precursor of DMS is thought to be dimethylsulfoniopropionate. However, hydrogen sulfide (H2S), a widely distributed and abundant volatile in natural environments, can be methylated to DMS. The microorganisms and the enzymes that convert H2S to DMS, and their importance in global sulfur cycling were unknown. Here we demonstrate that the bacterial MddA enzyme, previously known as a methanethiol S-methyltransferase, could methylate inorganic H2S to DMS. We determine key residues involved in MddA catalysis and propose the mechanism for H2S S-methylation. These results enabled subsequent identification of functional MddA enzymes in abundant haloarchaea and a diverse range of algae, thus expanding the significance of MddA mediated H2S methylation to other domains of life. Furthermore, we provide evidence for H2S S-methylation being a detoxification strategy in microorganisms. The mddA gene was abundant in diverse environments including marine sediments, lake sediments, hydrothermal vents and soils. Thus, the significance of MddA-driven methylation of inorganic H2S to global DMS production and sulfur cycling has likely been considerably underestimated.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3