Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment

Author:

Zhang PengORCID,Mao DaqingORCID,Gao HuihuiORCID,Zheng Liyang,Chen Zeyou,Gao YutingORCID,Duan Yitao,Guo JianhuaORCID,Luo YiORCID,Ren Hongqiang

Abstract

AbstractMultidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.

Funder

Department of Education and Training | Australian Research Council

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3