A quixotic view of spatial bias in modelling the distribution of species and their diversity

Author:

Rocchini Duccio,Tordoni Enrico,Marchetto Elisa,Marcantonio Matteo,Barbosa A. Márcia,Bazzichetto Manuele,Beierkuhnlein Carl,Castelnuovo Elisa,Gatti Roberto Cazzolla,Chiarucci Alessandro,Chieffallo Ludovico,Da Re Daniele,Di Musciano Michele,Foody Giles M.,Gabor Lukas,Garzon-Lopez Carol X.,Guisan Antoine,Hattab Tarek,Hortal Joaquin,Kunin William E.,Jordán Ferenc,Lenoir Jonathan,Mirri Silvia,Moudrý Vítězslav,Naimi Babak,Nowosad Jakub,Sabatini Francesco Maria,Schweiger Andreas H.,Šímová Petra,Tessarolo Geiziane,Zannini Piero,Malavasi Marco

Abstract

AbstractEcological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three main strategies that may provide a fair account of spatial bias, namely: (i) how to represent spatial bias; (ii) how to simulate null models based on virtual species for testing biogeographical and species distribution hypotheses; and (iii) how to make use of spatial bias - in particular related to sampling effort - as a leverage instead of a hindrance in species distribution modelling. We link these strategies with good practice in accounting for spatial bias in species distribution modelling.

Funder

European Commission

Ministero dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3