A Raman topography imaging method toward assisting surgical tumor resection

Author:

Czaja Alexander,Jiang Alice J.,Blanco Matt Zacchary,Eremina Olga E.,Zavaleta Cristina

Abstract

AbstractAchieving complete tumor resection upon initial surgical intervention can lead to better patient outcomes by making adjuvant treatments more efficacious and reducing the strain of repeat surgeries. Complete tumor resection can be difficult to confirm intraoperatively. Methods like touch preparation (TP) have been inconsistent for detecting residual malignant cell populations, and fatty specimens like breast cancer lumpectomies are too fatty to process for rapid histology. We propose a novel workflow of immunostaining and topographic surface imaging of freshly excised tissue to ensure complete resection using highly sensitive and spectrally separable surface-enhanced Raman scattering nanoparticles (SERS NPs) as the targeted contrast agent. Biomarker-targeting SERS NPs are ideal contrast agents for this application because their sensitivity enables rapid detection, and their narrow bands enable extensive intra-pixel multiplexing. The adaptive focus capabilities of an advanced Raman instrument, combined with our rotational accessory device for exposing each surface of the stained specimen to the objective lens, enable topographic mapping of complete excised specimen surfaces. A USB-controlled accessory for a Raman microscope was designed and fabricated to enable programmatic and precise angular manipulation of specimens in concert with instrument stage motions during whole-surface imaging. Specimens are affixed to the accessory on an anti-slip, sterilizable rod, and the tissue surface exposed to the instrument is adjusted on demand using a programmed rotating stepper motor. We demonstrate this topographic imaging strategy on a variety of phantoms and preclinical tissue specimens. The results show detail and texture in specimen surface topography, orientation of findings and navigability across surfaces, and extensive SERS NP multiplexing and linear quantitation capabilities under this new Raman topography imaging method. We demonstrate successful surface mapping and recognition of all 26 of our distinct SERS NP types along with effective deconvolution and localization of randomly assigned NP mixtures. Increasing NP concentrations were also quantitatively assessed and showed a linear correlation with Raman signal with an R2 coefficient of determination of 0.97. Detailed surface renderings color-encoded by unmixed SERS NP abundances show a path forward for content-rich, interactive surgical margin assessment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3