A dataset of synthetic art dialogues with ChatGPT

Author:

Gil-Martín ManuelORCID,Luna-Jiménez Cristina,Esteban-Romero Sergio,Estecha-Garitagoitia Marcos,Fernández-Martínez Fernando,D’Haro Luis Fernando

Abstract

AbstractThis paper introduces Art_GenEvalGPT, a novel dataset of synthetic dialogues centered on art generated through ChatGPT. Unlike existing datasets focused on conventional art-related tasks, Art_GenEvalGPT delves into nuanced conversations about art, encompassing a wide variety of artworks, artists, and genres, and incorporating emotional interventions, integrating speakers’ subjective opinions and different roles for the conversational agents (e.g., teacher-student, expert guide, anthropic behavior or handling toxic users). Generation and evaluation stages of GenEvalGPT platform are used to create the dataset, which includes 13,870 synthetic dialogues, covering 799 distinct artworks, 378 different artists, and 26 art styles. Automatic and manual assessment proof the high quality of the synthetic dialogues generated. For the profile recovery, promising lexical and semantic metrics for objective and factual attributes are offered. For subjective attributes, the evaluation for detecting emotions or subjectivity in the interventions achieves 92% of accuracy using LLM-self assessment metrics.

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Budzianowski, P. et al. MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling. 2018 Conference on Empirical Methods in Natural Language Processing (Emnlp 2018), 5016–5026 (2018).

2. Gopalakrishnan, K. et al. Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations. Interspeech 2019, 1891–1895, https://doi.org/10.21437/Interspeech.2019-3079 (2019).

3. Zhang, S. et al. 2204-2213 (Association for Computational Linguistics).

4. Li, Y. et al. DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 986–995, Taipei, Taiwan. Asian Federation of Natural Language Processing (2017).

5. Lee, Y.-J., Ko, B., Kim, H.-G. & Choi, H.-J. DialogCC: Large-Scale Multi-Modal Dialogue Dataset. ArXiv abs/2212.04119 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3