Abstract
AbstractAn auto-generated thermoelectric-materials database is presented, containing 22,805 data records, automatically generated from the scientific literature, spanning 10,641 unique extracted chemical names. Each record contains a chemical entity and one of the seminal thermoelectric properties: thermoelectric figure of merit, ZT; thermal conductivity, κ; Seebeck coefficient, S; electrical conductivity, σ; power factor, PF; each linked to their corresponding recorded temperature, T. The database was auto-generated using the automatic sentence-parsing capabilities of the chemistry-aware, natural language processing toolkit, ChemDataExtractor 2.0, adapted for application in the thermoelectric-materials domain, following a rule-based sentence-simplification step. Data were mined from the text of 60,843 scientific papers that were sourced from three scientific publishers: Elsevier, the Royal Society of Chemistry, and Springer. To the best of our knowledge, this is the first automatically-generated database of thermoelectric materials and their properties from existing literature. The database was evaluated to have a precision of 82.25% and has been made publicly available to facilitate the application of data science in the thermoelectric-materials domain, for analysis, design, and prediction.
Funder
RCUK | Engineering and Physical Sciences Research Council
Royal Academy of Engineering
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献