Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield

Author:

Ni Xueping,Li ChangyingORCID,Jiang Huanyu,Takeda Fumiomi

Abstract

AbstractFruit traits such as cluster compactness, fruit maturity, and berry number per clusters are important to blueberry breeders and producers for making informed decisions about genotype selection related to yield traits and harvestability as well as for plant management. The goal of this study was to develop a data processing pipeline to count berries, to measure maturity, and to evaluate compactness (cluster tightness) automatically using a deep learning image segmentation method for four southern highbush blueberry cultivars (‘Emerald’, ‘Farthing’, ‘Meadowlark’, and ‘Star’). An iterative annotation strategy was developed to label images that reduced the annotation time. A Mask R-CNN model was trained and tested to detect and segment individual blueberries with respect to maturity. The mean average precision for the validation and test dataset was 78.3% and 71.6% under 0.5 intersection over union (IOU) threshold, and the corresponding mask accuracy was 90.6% and 90.4%, respectively. Linear regression of the detected berry number and the ground truth showed an R2 value of 0.886 with a root mean square error (RMSE) of 1.484. Analysis of the traits collected from the four cultivars indicated that ‘Star’ had the fewest berries per clusters, ‘Farthing’ had the least mature fruit in mid-April, ‘Farthing’ had the most compact clusters, and ‘Meadowlark’ had the loosest clusters. The deep learning image segmentation technique developed in this study is efficient for detecting and segmenting blueberry fruit, for extracting traits of interests related to machine harvestability, and for monitoring blueberry fruit development.

Funder

United States Department of Agriculture | National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3