More than one antibody of individual B cells revealed by single-cell immune profiling

Author:

Shi Zhan,Zhang Qingyang,Yan Huige,Yang Ying,Wang Pingzhang,Zhang Yixiao,Deng Zhenling,Yu Meng,Zhou Wenjing,Wang Qianqian,Yang Xi,Mo Xiaoning,Zhang Chi,Huang Jing,Dai Hui,Sun Baofa,Zhao Yongliang,Zhang LiangORCID,Yang Yun-GuiORCID,Qiu Xiaoyan

Abstract

AbstractAntibodies have a common structure consisting of two identical heavy (H) and two identical light (L) chains. It is widely accepted that a single mature B cell produces a single antibody through restricted synthesis of only one VHDJH (encoding the H-chain variable region) and one VLJL (encoding the L-chain variable region) via recombination. Naive B cells undergo class-switch recombination (CSR) from initially producing membrane-bound IgM and IgD to expressing more effective membrane-bound IgG, IgA, or IgE when encountering antigens. To ensure the “one cell — one antibody” paradigm, only the constant region of the H chain is replaced during CSR, while the rearranged VHDJH pattern and the L chain are kept unchanged. To define those long-standing classical concepts at the single-cell transcriptome level, we applied the Chromium Single-Cell Immune Profiling Solution and Sanger sequencing to evaluate the Ig transcriptome repertoires of single B cells. Consistent with the “one cell — one antibody” rule, most of the B cells showed one V(D)J recombination pattern. Intriguingly, however, two or more VHDJH or VLJL recombination patterns of IgH chain or IgL chain were also observed in hundreds to thousands of single B cells. Moreover, each Ig class showed unique VHDJH recombination pattern in a single B-cell expressing multiple Ig classes. Together, our findings reveal an unprecedented presence of multi-Ig specificity in some single B cells, implying regulation of Ig gene rearrangement and class switching that differs from the classical mechanisms of both the “one cell — one antibody” rule and CSR.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3