Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms

Author:

Ruben ManuelORCID,Hefter JensORCID,Schubotz FlorenceORCID,Geibert WalterORCID,Butzin MartinORCID,Gentz TorbenORCID,Grotheer HendrikORCID,Forwick MatthiasORCID,Szczuciński WitoldORCID,Mollenhauer GesineORCID

Abstract

AbstractRock-derived or petrogenic organic carbon has traditionally been regarded as being non-bioavailable and bypassing the active carbon cycle when eroded. However, it has become apparent that this organic carbon might not be so inert, especially in fjord systems where petrogenic organic carbon influxes can be high, making its degradation another potential source of greenhouse gas emissions. The extent to which subsurface micro-organisms use this organic carbon is not well constrained, despite its potential impacts on global carbon cycling. Here, we performed compound-specific radiocarbon analyses on intact polar lipid–fatty acids of live micro-organisms from marine sediments in Hornsund Fjord, Svalbard. By this means, we estimate that local bacterial communities utilize between 5 ± 2% and 55 ± 6% (average of 25 ± 16%) of petrogenic organic carbon for their biosynthesis, providing evidence for the important role of petrogenic organic carbon as a substrate after sediment redeposition. We hypothesize that the lack of sufficient recently synthesized organic carbon from primary production forces micro-organisms into utilization of petrogenic organic carbon as an alternative energy source. The input of petrogenic organic carbon to marine sediments and subsequent utilization by subsurface micro-organisms represents a natural source of fossil greenhouse gas emissions over geological timescales.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3