Antarctic Peninsula glaciation patterns set by landscape evolution and dynamic topography

Author:

Fox MatthewORCID,Clinger Anna,Smith Adam G. G.ORCID,Cuffey KurtORCID,Shuster David,Herman FredericORCID

Abstract

AbstractThe dimensions of past ice sheets provide a record of palaeoclimate but depend on underlying topography, which evolves over geological timescales by tectonic uplift and erosional downcutting. Erosion during the Pleistocene epoch (2,580 to 11.650 thousand years ago) reduced glacier extent in some locations even as climate cooled, but whether other non-climatic influences impacted the glacial–geological record is poorly known. The Antarctic Peninsula provides an opportunity to examine this issue because of its long glacial history and preservation of remnants of a low-relief pre-glacial land surface. Here we reconstructed both palaeo-surface topography and long-wavelength variations of surface uplift for the Antarctic Peninsula by using inverse analysis that assimilates local topographic remnants with the branching structures of entire modern drainage networks. We found that the Antarctic Peninsula rose tectonically by up to 1.5 km due to dynamical support from the mantle. Glaciological models using the current climate and our palaeotopography show greatly reduced ice extent in the northern Antarctic Peninsula compared with modern, indicating that the onset of glaciation identified at offshore sites reflects tectonic uplift of the topography rather than climatic cooling. In the southern Antarctic Peninsula, however, we suggest the low-relief pre-glacial landscape supported a considerably greater ice volume than the modern mountainous topography, illustrating the influence of erosional sculpting on glaciation patterns.

Funder

National Science Foundation

RCUK | Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3