Abstract
AbstractWith mounting concerns over climate change, the utilisation or conversion of carbon dioxide into sustainable, synthetic hydrocarbons fuels, most notably for transportation purposes, continues to attract worldwide interest. This is particularly true in the search for sustainable or renewable aviation fuels. These offer considerable potential since, instead of consuming fossil crude oil, the fuels are produced from carbon dioxide using sustainable renewable hydrogen and energy. We report here a synthetic protocol to the fixation of carbon dioxide by converting it directly into aviation jet fuel using novel, inexpensive iron-based catalysts. We prepare the Fe-Mn-K catalyst by the so-called Organic Combustion Method, and the catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). The conversion reaction also produces light olefins ethylene, propylene, and butenes, totalling a yield of 8.7%, which are important raw materials for the petrochemical industry and are presently also only obtained from fossil crude oil. As this carbon dioxide is extracted from air, and re-emitted from jet fuels when combusted in flight, the overall effect is a carbon-neutral fuel. This contrasts with jet fuels produced from hydrocarbon fossil sources where the combustion process unlocks the fossil carbon and places it into the atmosphere, in longevity, as aerial carbon - carbon dioxide.
Funder
RCUK | Engineering and Physical Sciences Research Council
King Abdulaziz City for Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference90 articles.
1. Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225 (2016).
2. Bello, B. Captured CO2 to grow microalgae for bio-jet fuel production. (UKCCSC Winter School, University of Cambridge, Cambridge, UK, 2012).
3. Hari, T. K., Yaakob, Z. & Binitha, N. N. Aviation biofuel from renewable resources: routes, opportunities and challenges. Renew. Sust. Energ. Rev. 42, 1234–1244 (2015).
4. Kallio, P., Pásztor, A., Akhtar, M. K. & Jones, P. R. Renewable jet fuel. Curr. Opin. Biotechnol. 26, 50–55 (2014).
5. Liu, G., Yan, B. & Chen, G. Technical review on jet fuel production. Renew. Sust. Energ. Rev. 25, 59–70 (2013).
Cited by
215 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献