The role of charge in microdroplet redox chemistry

Author:

Heindel Joseph P.,LaCour R. Allen,Head-Gordon TeresaORCID

Abstract

AbstractIn charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH and H+ that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH and H reactive species. We find that at ~ 20 − 50% of the Rayleigh limit of droplet charge the hydration enthalpy of both OH and H+ have decreased by >50 kcal/mol such that electron transfer becomes thermodynamically favorable, in correspondence with the more favorable vertical electron affinity of H+ and the lowered vertical ionization energy of OH. We provide scaling arguments that show that the nanoscale calculations and conclusions extend to the experimental microdroplet length scale. The relevance of the droplet charge for chemical reactivity is illustrated for the formation of H2O2, and has clear implications for other redox reactions observed to occur with enhanced rates in microdroplets.

Funder

National Science Foundation

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3