Abstract
AbstractPhthalate esters (PAEs) have been extensively used as additives in plastics and wallcovering, causing severe environmental contamination and increasing public health concerns. Here, we find that hematite nanoparticles with specific facet-control can efficiently catalyze PAEs hydrolysis under ambient humidity conditions, with the hydrolysis rates 2 orders of magnitude higher than that in water saturated condition. The catalytic performance of hematite shows a significant facet-dependence with the reactivity in the order {012} > {104} ≫ {001}, related to the atomic array of surface undercoordinated Fe. The {012} and {104} facets with the proper neighboring Fe-Fe distance of 0.34-0.39 nm can bidentately coordinate with PAEs, and thus induce much stronger Lewis-acid catalysis. Our study may inspire the development of nanomaterials with appropriate surface atomic arrays, improves our understanding for the natural transformation of PAEs under low humidity environment, and provides a promising approach to remediate/purify the ambient air contaminated by PAEs.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献