HIV-1 subtype A1, D, and recombinant proviral genome landscapes during long-term suppressive therapy

Author:

Lee Guinevere Q.ORCID,Khadka Pragya,Gowanlock Sarah N.,Copertino Dennis C.ORCID,Duncan Maggie C.,Omondi F. HarrisonORCID,Kinloch Natalie N.,Kasule Jingo,Kityamuweesi Taddeo,Buule Paul,Jamiru Samiri,Tomusange Stephen,Anok Aggrey,Chen Zhengming,Jones R. BradORCID,Galiwango Ronald M.,Reynolds Steven J.,Quinn Thomas C.,Brumme Zabrina L.ORCID,Redd Andrew D.,Prodger Jessica L.

Abstract

AbstractThe primary obstacle to curing HIV-1 is a reservoir of CD4+ cells that contain stably integrated provirus. Previous studies characterizing the proviral landscape, which have been predominantly conducted in males in the United States and Europe living with HIV-1 subtype B, have revealed that most proviruses that persist during antiretroviral therapy (ART) are defective. In contrast, less is known about proviral landscapes in females with non-B subtypes, which represents the largest group of individuals living with HIV-1. Here, we analyze genomic DNA from resting CD4+ T-cells from 16 female and seven male Ugandans with HIV-1 receiving suppressive ART (n = 23). We perform near-full-length proviral sequencing at limiting dilution to examine the proviral genetic landscape, yielding 607 HIV-1 subtype A1, D, and recombinant proviral sequences (mean 26/person). We observe that intact genomes are relatively rare and clonal expansion occurs in both intact and defective genomes. Our modification of the primers and probes of the Intact Proviral DNA Assay (IPDA), developed for subtype B, rescues intact provirus detection in Ugandan samples for which the original IPDA fails. This work will facilitate research on HIV-1 persistence and cure strategies in Africa, where the burden of HIV-1 is heaviest.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

Gouvernement du Canada | Canadian Institutes of Health Research

Wellcome Trust

Michael Smith Foundation for Health Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3