Abstract
AbstractIn contrast to the conventional passive reaction to analytes, here, we create a proof-of-concept nanochannel system capable of on-demand recognition of the target to achieve an unbiased response. Inspired by light-activatable biological channelrhodopsin-2, photochromic spiropyran/anodic aluminium oxide nanochannel sensors are constructed to realize a light-controlled inert/active-switchable response to SO2 by ionic transport behaviour. We find that light can finely regulate the reactivity of the nanochannels for the on-demand detection of SO2. Pristine spiropyran/anodic aluminium oxide nanochannels are not reactive to SO2. After ultraviolet irradiation of the nanochannels, spiropyran isomerizes to merocyanine with a carbon‒carbon double bond nucleophilic site, which can react with SO2 to generate a new hydrophilic adduct. Benefiting from increasing asymmetric wettability, the proposed device exhibits a robust photoactivated detection performance in SO2 detection in the range from 10 nM to 1 mM achieved by monitoring the rectified current.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献