In situ captured antibacterial action of membrane-incising peptide lamellae

Author:

el Battioui Kamal,Chakraborty Sohini,Wacha AndrásORCID,Molnár Dániel,Quemé-Peña Mayra,Szigyártó Imola Cs.,Szabó Csenge LillaORCID,Bodor AndreaORCID,Horváti Kata,Gyulai GergőORCID,Bősze Szilvia,Mihály Judith,Jezsó BálintORCID,Románszki LorándORCID,Tóth Judit,Varga Zoltán,Mándity István,Juhász Tünde,Beke-Somfai TamásORCID

Abstract

AbstractDeveloping unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.

Publisher

Springer Science and Business Media LLC

Reference78 articles.

1. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

2. OMS. 2020 Antibacterial Agents in Clinical and Preclinical Development. World Health Organization 2021 (2021).

3. United Nations Environment Programme. Frontiers 2017 - Emerging Issues Of Environmental Concern. UN Environment (2017).

4. World Health Organization. Priorities on Antimicrobial Resistance. (2022).

5. Hurdle, J. G., O’Neill, A. J., Chopra, I. & Lee, R. E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 9, 62–75 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3