Abstract
AbstractStrongly correlated materials respond sensitively to external perturbations such as strain, pressure, and doping. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be enhanced via only ~ 1% compressive strain-tuning with the root of such enhancement still being elusive. Using resonant inelastic x-ray scattering (RIXS), we investigate the magnetic excitations in infinite-layer PrNiO2 thin films grown on two different substrates, namely SrTiO3 (STO) and (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) enforcing different strain on the nickelates films. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the bandwidth of spin excitations of the parent compounds is similar under strain while Tc in the doped ones is not, and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates.
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Li, D. F. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624 (2019).
2. Botana, A. S. & Norman, M. R. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys. Rev. X 10, 011024 (2020).
3. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381 (2020).
4. Higash, K. et al. Core-level x-ray spectroscopy of infinite-layer nickelate: LDA+ DMFT study. Phys. Rev. X 11, 041009 (2021).
5. Goodge, B. H. et al. Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates. Proc. Natl Acad. Sci. USA 118, e2007683118 (2021).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献