Abstract
AbstractColonoscopy is commonly used to screen for colorectal cancer (CRC). We develop a deep learning model called CRCNet for optical diagnosis of CRC by training on 464,105 images from 12,179 patients and test its performance on 2263 patients from three independent datasets. At the patient-level, CRCNet achieves an area under the precision-recall curve (AUPRC) of 0.882 (95% CI: 0.828–0.931), 0.874 (0.820–0.926) and 0.867 (0.795–0.923). CRCNet exceeds average endoscopists performance on recall rate across two test sets (91.3% versus 83.8%; two-sided t-test, p < 0.001 and 96.5% versus 90.3%; p = 0.006) and precision for one test set (93.7% versus 83.8%; p = 0.02), while obtains comparable recall rate on one test set and precision on the other two. At the image-level, CRCNet achieves an AUPRC of 0.990 (0.987–0.993), 0.991 (0.987–0.995), and 0.997 (0.995–0.999). Our study warrants further investigation of CRCNet by prospective clinical trials.
Funder
National Natural Science Foundation of China
Funder: Program for Changjiang Scholars and Innovative Research Team in University in China Grant Reference Number: IRT_14R40
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献