Stability of synchronization in simplicial complexes

Author:

Gambuzza L. V.,Di Patti F.ORCID,Gallo L.ORCID,Lepri S.,Romance M.ORCID,Criado R.,Frasca M.,Latora V.ORCID,Boccaletti S.

Abstract

AbstractVarious systems in physics, biology, social sciences and engineering have been successfully modeled as networks of coupled dynamical systems, where the links describe pairwise interactions. This is, however, too strong a limitation, as recent studies have revealed that higher-order many-body interactions are present in social groups, ecosystems and in the human brain, and they actually affect the emergent dynamics of all these systems. Here, we introduce a general framework to study coupled dynamical systems accounting for the precise microscopic structure of their interactions at any possible order. We show that complete synchronization exists as an invariant solution, and give the necessary condition for it to be observed as a stable state. Moreover, in some relevant instances, such a necessary condition takes the form of a Master Stability Function. This generalizes the existing results valid for pairwise interactions to the case of complex systems with the most general possible architecture.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing the ‘omic toolkit of comparative physiologists;Comparative Biochemistry and Physiology Part D: Genomics and Proteomics;2024-12

2. Death transitions in attractive–repulsive coupled oscillators with higher-order interactions;International Journal of Non-Linear Mechanics;2024-12

3. Simplicial epidemic model with a threshold policy;Physica A: Statistical Mechanics and its Applications;2024-11

4. On the Convergence of Nonlinear Averaging Dynamics with Three-Body Interactions on Hypergraphs;SIAM Journal on Applied Dynamical Systems;2024-09-04

5. Multiplex measures for higher-order networks;Applied Network Science;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3