Tumour gene expression signature in primary melanoma predicts long-term outcomes

Author:

Garg ManikORCID,Couturier Dominique-LaurentORCID,Nsengimana JérémieORCID,Fonseca Nuno A.ORCID,Wongchenko MatthewORCID,Yan Yibing,Lauss Martin,Jönsson Göran B.,Newton-Bishop Julia,Parkinson Christine,Middleton Mark R.ORCID,Bishop D. TimothyORCID,McDonald Sarah,Stefanos Nikki,Tadross JohnORCID,Vergara Ismael A.ORCID,Lo SerigneORCID,Newell FelicityORCID,Wilmott James S.,Thompson John F.ORCID,Long Georgina V.,Scolyer Richard A.ORCID,Corrie Pippa,Adams David J.ORCID,Brazma AlvisORCID,Rabbie RoyORCID

Abstract

AbstractAdjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10−5) and overall survival (HR = 1.61, p = 1.67 × 10−4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10−4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = −0.75, p < 2.2 × 10−16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.

Funder

University of Sydney Medical Foundation

Department of Health | National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3