Memristor-based analogue computing for brain-inspired sound localization with in situ training

Author:

Gao BinORCID,Zhou Ying,Zhang Qingtian,Zhang Shuanglin,Yao Peng,Xi Yue,Liu Qi,Zhao Meiran,Zhang WenqiangORCID,Liu ZhengwuORCID,Li Xinyi,Tang Jianshi,Qian He,Wu HuaqiangORCID

Abstract

AbstractThe human nervous system senses the physical world in an analogue but efficient way. As a crucial ability of the human brain, sound localization is a representative analogue computing task and often employed in virtual auditory systems. Different from well-demonstrated classification applications, all output neurons in localization tasks contribute to the predicted direction, introducing much higher challenges for hardware demonstration with memristor arrays. In this work, with the proposed multi-threshold-update scheme, we experimentally demonstrate the in-situ learning ability of the sound localization function in a 1K analogue memristor array. The experimental and evaluation results reveal that the scheme improves the training accuracy by ∼45.7% compared to the existing method and reduces the energy consumption by ∼184× relative to the previous work. This work represents a significant advance towards memristor-based auditory localization system with low energy consumption and high performance.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research progress of artificial neural systems based on memristors;Materials Today Nano;2024-03

2. Memristor-Based Artificial Chips;ACS Nano;2023-12-28

3. Experimental Demonstration of CeO2-Based Tunable Gated Memristor for RRAM Applications;ACS Applied Electronic Materials;2023-11-15

4. In-sensor Computing Based on Two-terminal Optoelectronic Memristors;Advanced Memory Technology;2023-10-09

5. A new passive non-ideal floating memristor emulator circuit;AEU - International Journal of Electronics and Communications;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3