Type II innate lymphoid cell plasticity contributes to impaired reconstitution after allogeneic hematopoietic stem cell transplantation

Author:

Laurie Sonia J.ORCID,Foster Joseph P.,Bruce Danny W.,Bommiasamy Hemamalini,Kolupaev Oleg V.,Yazdimamaghani Mostafa,Pattenden Samantha G.,Chao Nelson J.ORCID,Sarantopoulos StefanieORCID,Parker Joel S.ORCID,Davis Ian J.,Serody Jonathan S.ORCID

Abstract

AbstractType II innate lymphoid cells (ILC2s) maintain homeostasis and barrier integrity in mucosal tissues. In both mice and humans, ILC2s poorly reconstitute after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Determining the mechanisms involved in their impaired reconstitution could improve transplant outcomes. By integrating single-cell chromatin and transcriptomic analyses of transplanted ILC2s, we identify a previously unreported population of converted ILC1-like cells in the mouse small intestine post-transplant. Exposure of ILC2s to proinflammatory cytokines resulted in a mixed ILC1-ILC2 phenotype but was able to convert only a small population of ILC2s to ILC1s, which were found post-transplant. Whereas ILC2s protected against acute graft-versus-host disease (aGVHD) mediated mortality, infusion of proinflammatory cytokine-exposed ILC2s accelerated aGvHD. Interestingly, murine ILC2 reconstitution post-HSCT is decreased in the presence of alloreactive T cells. Finally, peripheral blood cells from human patients with aGvHD have an altered ILC2-associated chromatin landscape compared to transplanted controls. These data demonstrate that following transplantation ILC2s convert to a pro-pathogenic population with an ILC1-like chromatin state and provide insights into the contribution of ILC plasticity to the impaired reconstitution of ILC2 cells, which is one of several potential mechanisms for the poor reconstitution of these important cells after allo-HSCT.

Funder

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

U.S. Department of Health & Human Services | NIH | National Cancer Institute

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3