Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals

Author:

Zhong Li,Zhang YinORCID,Wang XiangORCID,Zhu TingORCID,Mao Scott X.ORCID

Abstract

AbstractTwinning is an essential mode of plastic deformation for achieving superior strength and ductility in metallic nanostructures. It has been generally believed that twinning-induced plasticity in body-centered cubic (BCC) metals is controlled by twin nucleation, but facilitated by rapid twin growth once the nucleation energy barrier is overcome. By performing in situ atomic-scale transmission electron microscopy straining experiments and atomistic simulations, we find that deformation twinning in BCC Ta nanocrystals larger than 15 nm in diameter proceeds by reluctant twin growth, resulting from slow advancement of twinning partials along the boundaries of finite-sized twin structures. In contrast, reluctant twin growth can be obviated by reducing the nanocrystal diameter to below 15 nm. As a result, the nucleated twin structure penetrates quickly through the cross section of nanocrystals, enabling fast twin growth via facile migration of twin boundaries leading to large uniform plastic deformation. The present work reveals a size-dependent transition in the nucleation- and growth-controlled twinning mechanism in BCC metals, and provides insights for exploiting twinning-induced plasticity and breaking strength-ductility limits in nanostructured BCC metals.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3