β-Variational autoencoders and transformers for reduced-order modelling of fluid flows

Author:

Solera-Rico AlbertoORCID,Sanmiguel Vila CarlosORCID,Gómez-López MiguelORCID,Wang YuningORCID,Almashjary Abdulrahman,Dawson Scott T. M.ORCID,Vinuesa RicardoORCID

Abstract

AbstractVariational autoencoder architectures have the potential to develop reduced-order models for chaotic fluid flows. We propose a method for learning compact and near-orthogonal reduced-order models using a combination of a β-variational autoencoder and a transformer, tested on numerical data from a two-dimensional viscous flow in both periodic and chaotic regimes. The β-variational autoencoder is trained to learn a compact latent representation of the flow velocity, and the transformer is trained to predict the temporal dynamics in latent-space. Using the β-variational autoencoder to learn disentangled representations in latent-space, we obtain a more interpretable flow model with features that resemble those observed in the proper orthogonal decomposition, but with a more efficient representation. Using Poincaré maps, the results show that our method can capture the underlying dynamics of the flow outperforming other prediction models. The proposed method has potential applications in other fields such as weather forecasting, structural dynamics or biomedical engineering.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3