Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation

Author:

Moon JunhyukORCID,Lee Heung ChanORCID,Jung Heechul,Wakita Shinya,Cho Sungnim,Yoon Jaegu,Lee Joowook,Ueda Atsushi,Choi Bokkyu,Lee Sihyung,Ito Kimihiko,Kubo YoshimiORCID,Lim Alan Christian,Seo Jeong Gil,Yoo Jungho,Lee Seungyeon,Ham Yongnam,Baek Woonjoong,Ryu Young-GyoonORCID,Han In Taek

Abstract

AbstractDurability of high-energy throughput batteries is a prerequisite for electric vehicles to penetrate the market. Despite remarkable progresses in silicon anodes with high energy densities, rapid capacity fading of full cells with silicon–graphite anodes limits their use. In this work, we unveil degradation mechanisms such as Li+ crosstalk between silicon and graphite, consequent Li+ accumulation in silicon, and capacity depression of graphite due to silicon expansion. The active material properties, i.e. silicon particle size and graphite hardness, are then modified based on these results to reduce Li+ accumulation in silicon and the subsequent degradation of the active materials in the anode. Finally, the cycling performance is tailored by designing electrodes to regulate Li+ crosstalk. The resultant full cell with an areal capacity of 6 mAh cm−2 has a cycle life of >750 cycles the volumetric energy density of 800 Wh L−1 in a commercial cell format.

Funder

Samsung electronics

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference58 articles.

1. United States Environmental Protection Agency. Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions (2020)

2. Edenhofer, O. et al. AR5 Climate Change 2014: Mitigation of Climate Change (IPCC Report) (Cambridge University Press, 2014).

3. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

4. Office of Energy Efficiency & Renewable Energy. 2018 Annual Merit Review Report, Vehicle Technology Office (US Department of Energy, 2018). https://www.energy.gov/eere/vehicles/downloads/2018-annual-merit-review-report

5. Andre, D. et al. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3