Abstract
AbstractThe incorporation of supramolecular macrocycles into porous organic polymers may endow the material with enhanced uptake of specific guests through host−guest interactions. Here we report a solvent and catalyst-free mechanochemical synthesis of pillar[5]quinone (P5Q) derived multi-microporous organic polymers with hydrophenazine linkages (MHP-P5Q), which show a unique 3-step N2 adsorption isotherm. In comparison with analogous microporous hydrophenazine-linked organic polymers (MHPs) obtained using simple twofold benzoquinones, MHP-P5Q is demonstrated to have a superior performance in radioactive iodomethane (CH3I) capture and storage. Mechanistic studies show that the rigid pillar[5]arene cavity has additional binding sites though host−guest interactions as well as the halogen bond (−I⋯N = C−) and chemical adsorption in the multi-microporous MHP-P5Q mainly account for the rapid and high-capacity adsorption and long-term storage of CH3I.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献