Using genome and transcriptome data from African-ancestry female participants to identify putative breast cancer susceptibility genes

Author:

Ping JieORCID,Jia GuochongORCID,Cai QiuyinORCID,Guo XingyiORCID,Tao Ran,Ambrosone ChristineORCID,Huo DezhengORCID,Ambs StefanORCID,Barnard Mollie E.,Chen Yu,Garcia-Closas MontserratORCID,Gu JianORCID,Hu Jennifer J.ORCID,John Esther M.,Li Christopher I.,Nathanson KatherineORCID,Nemesure Barbara,Olopade Olufunmilayo I.,Pal Tuya,Press Michael F.ORCID,Sanderson Maureen,Sandler Dale P.ORCID,Yoshimatsu Toshio,Adejumo Prisca O.,Ahearn ThomasORCID,Brewster Abenaa M.,Hennis Anselm J. M.,Makumbi Timothy,Ndom Paul,O’Brien Katie M.,Olshan Andrew F.,Oluwasanu Mojisola M.,Reid Sonya,Yao SongORCID,Butler Ebonee N.ORCID,Huang Maosheng,Ntekim AtaraORCID,Li BingshanORCID,Troester Melissa A.,Palmer Julie R.,Haiman Christopher A.ORCID,Long Jirong,Zheng WeiORCID

Abstract

AbstractAfrican-ancestry (AA) participants are underrepresented in genetics research. Here, we conducted a transcriptome-wide association study (TWAS) in AA female participants to identify putative breast cancer susceptibility genes. We built genetic models to predict levels of gene expression, exon junction, and 3′ UTR alternative polyadenylation using genomic and transcriptomic data generated in normal breast tissues from 150 AA participants and then used these models to perform association analyses using genomic data from 18,034 cases and 22,104 controls. At Bonferroni-corrected P < 0.05, we identified six genes associated with breast cancer risk, including four genes not previously reported (CTD-3080P12.3, EN1, LINC01956 and NUP210L). Most of these genes showed a stronger association with risk of estrogen-receptor (ER) negative or triple-negative than ER-positive breast cancer. We also replicated the associations with 29 genes reported in previous TWAS at P < 0.05 (one-sided), providing further support for an association of these genes with breast cancer risk. Our study sheds new light on the genetic basis of breast cancer and highlights the value of conducting research in AA populations.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3