Abstract
AbstractA standard paradigm of localization microscopy involves extension from two to three dimensions by engineering information into emitter images, and approximation of errors resulting from the field dependence of optical aberrations. We invert this standard paradigm, introducing the concept of fully exploiting the latent information of intrinsic aberrations by comprehensive calibration of an ordinary microscope, enabling accurate localization of single emitters in three dimensions throughout an ultrawide and deep field. To complete the extraction of spatial information from microscale bodies ranging from imaging substrates to microsystem technologies, we introduce a synergistic concept of the rigid transformation of the positions of multiple emitters in three dimensions, improving precision, testing accuracy, and yielding measurements in six degrees of freedom. Our study illuminates the challenge of aberration effects in localization microscopy, redefines the challenge as an opportunity for accurate, precise, and complete localization, and elucidates the performance and reliability of a complex microelectromechanical system.
Funder
United States Department of Commerce | National Institute of Standards and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference55 articles.
1. von Diezmann, A., Shechtman, Y. & Moerner, W. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117, 7244–7275 (2017).
2. Mathai, P. P., Liddle, J. A. & Stavis, S. M. Optical tracking of nanoscale particles in microscale environments. Appl. Phys. Rev. 3, 011105 (2016).
3. Bierbaum, M., Leahy, B. D., Alemi, A. A., Cohen, I. & Sethna, J. P. Light microscopy at maximal precision. Phys. Rev. x 7, 041007 (2017).
4. Diezmann, A. V., Lee, M. Y., Lew, M. D. & Moerner, W. E. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. Optica 2, 985–993 (2015).
5. Siemons, M., Hulleman, C., Thorsen, R., Smith, C. & Stallinga, S. High precision wavefront control in point spread function engineering for single emitter localization. Opt. Express 26, 8397–8416 (2018).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献