Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

Author:

Wang GangORCID,Zhang Xingtan,Herre Edward Allen,McKey DoyleORCID,Machado Carlos A.,Yu Wen-BinORCID,Cannon Charles H.ORCID,Arnold Michael L.,Pereira Rodrigo A. S.,Ming RayORCID,Liu Yi-FeiORCID,Wang Yibin,Ma Dongna,Chen Jin

Abstract

AbstractFicus(figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast genomes for 15 species representing all major clades ofFicus. Multiple analyses of these genomic data suggest that hybridization events have occurred throughoutFicusevolutionary history. Furthermore, cophylogenetic reconciliation analyses detect significant incongruence among all nuclear, chloroplast, and mitochondrial-based phylogenies, none of which correspond with any published phylogenies of the associated pollinator wasps. These findings are most consistent with frequent host-switching by the pollinators, leading to fig hybridization, even between distantly related clades. Here, we suggest that these pollinator host-switches and fig hybridization events are a dominant feature of fig/wasp coevolutionary history, and by generating novel genomic combinations in the figs have likely contributed to the remarkable diversity exhibited by this mutualism.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Youth Innovation Promotion Association of the Chinese Academy of Sciences

West Light Foundation of Chinese Academy of Sciences

Bureau of International Cooperation, Chinese Academy of Sciences

Smithsonian Tropical Research Institute

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3