Femtosecond laser writing of ant-inspired reconfigurable microbot collectives

Author:

Ren Zhongguo,Xin ChenORCID,Liang Kaiwen,Wang Heming,Wang Dawei,Xu Liqun,Hu YanleiORCID,Li JiawenORCID,Chu Jiaru,Wu DongORCID

Abstract

AbstractMicrobot collectives can cooperate to accomplish complex tasks that are difficult for a single individual. However, various force-induced microbot collectives maintained by weak magnetic, light, and electric fields still face challenges such as unstable connections, the need for a continuous external stimuli source, and imprecise individual control. Here, we construct magnetic and light-driven ant microbot collectives capable of reconfiguring multiple assembled architectures with robustness. This methodology utilizes a flexible two-photon polymerization strategy to fabricate microbots consisting of magnetic photoresist, hydrogel, and metal nanoparticles. Under the cooperation of magnetic and light fields, the microbots can reversibly and selectively assemble (e.g., 90° assembly and 180° assembly) into various morphologies. Moreover, we demonstrate the ability of assembled microbots to cross a one-body-length gap and their adaptive capability to move through a constriction and transport microcargo. Our strategy will broaden the abilities of clustered microbots, including gap traversal, micro-object manipulation, and drug delivery.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3