Abstract
AbstractDNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial species, driving the hypothesis that a physical linker may tether them together. However, replisome splitting has also been reported in many of the same species, leaving the principles behind replisome organization a long-standing puzzle. Here, by tracking the replisome β-clamp subunit in live Caulobacter crescentus, we find that rapid DNA segregation can give rise to a second focus which resembles a replisome, but does not replicate DNA. Sister replisomes can remain colocalized, or split apart to travel along DNA separately upon disruption of chromosome inter-arm alignment. Furthermore, chromosome arm-specific replication-transcription conflicts differentially modify replication speed on the two arms, facilitate the decoupling of the two replisomes. With these observations, we conclude that the dynamic chromosome organization flexibly shapes the organization of sister replisomes, and we outline principles which can help to reconcile previously conflicting models of replisome architecture.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献