Abstract
AbstractRestricted and repetitive behaviors (RRBs) are a defining clinical feature of autism spectrum disorders (ASD). RRBs are highly heterogeneous with variable expression of circumscribed interests (CI), insistence of sameness (IS) and repetitive motor actions (RM), which are major impediments to effective functioning in individuals with ASD; yet, the neurobiological basis of CI, IS and RM is unknown. Here we evaluate a unified functional brain circuit model of RRBs and test the hypothesis that CI and IS are associated with aberrant cognitive control circuit dynamics, whereas RM is associated with aberrant motor circuit dynamics. Using task-free fMRI data from 96 children, we first demonstrate that time-varying cross-network interactions in cognitive control circuit are significantly reduced and inflexible in children with ASD, and predict CI and IS symptoms, but not RM symptoms. Furthermore, we show that time-varying cross-network interactions in motor circuit are significantly greater in children with ASD, and predict RM symptoms, but not CI or IS symptoms. We confirmed these results using cross-validation analyses. Moreover, we show that brain-clinical symptom relations are not detected with time-averaged functional connectivity analysis. Our findings provide neurobiological support for the validity of RRB subtypes and identify dissociable brain circuit dynamics as a candidate biomarker for a key clinical feature of ASD.
Funder
Brain and Behavior Research Foundation
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献