Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst

Author:

Li Guodong,Han Guanqun,Wang Lu,Cui Xiaoyu,Moehring Nicole K.,Kidambi Piran R.ORCID,Jiang De-enORCID,Sun YujieORCID

Abstract

AbstractThe broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference50 articles.

1. Jacobson, M. Z., Colella, W. G. & Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308, 1901–1905 (2005).

2. United States Department of Energy. A National Vision of America’s Transition to a Hydrogen Economy-to 2030 and Beyond (United States Department of Energy, 2003).

3. International Energy Agency (IEA). The Future of Hydrogen (International Energy Agency (IEA), 2019).

4. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

5. Chatenet, M. et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51, 4583–4762 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3